40 research outputs found

    Wavelength-codified fiber laser hydrogen detector

    Get PDF
    We report a scheme for an optical hydrogen detector that codifies the information in wavelength. The system is based on an erbium-doped fiber laser with two coupled cavities and a Palladium-coated tapered fiber within one of the laser cavities. The tapered fiber acts as the hydrogen-sensing element. When the sensing element is exposed to a hydrogen atmosphere, its attenuation decreases changing the cavity losses. This change leads the system to switch lasing from the wavelength of the auxiliary cavity to the characteristic wavelength of the cavity which contains the sensing element. The detection level can be shifted by adjusting the reflective elements of the cavity containing the sensing element

    Temperature independence of birefringence and group velocity dispersion in photonic crystal fibres

    Get PDF
    Experimental results are presented for the dependence of the dispersion and the birefringence of a highly birefringent photonic crystal fibre with temperature. It is shown that, unlike conventional optical fibres, where temperature induces stress regions between the different materials present in their structure, photonic crystal fibres exhibit no dependence with temperature of these optical properties owing to the single material nature of their structures

    High-power supercontinuum generation in dielectric-coated metallic hollow waveguides

    Full text link
    In this Letter we theoretically study a novel approach for soliton-induced supercontinuum generation based on the application of metallic dielectric-coated hollow waveguides. Low loss of such waveguides permits the use of smaller diameters with enhanced dispersion control and enables the generation of two-octave-broad spectra with unprecedentedly high spectral peak power densities up to five orders of magnitude larger than in standard PCFs with high coherence. We also predict that high-power supercontinua in the vacuum ultraviolet can be generated in such waveguides.Comment: 5 pages, 3 figure

    Quantum internet using code division multiple access

    Full text link
    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.Comment: 29 pages, 6 figure

    Comb-Based Radio-Frequency Photonic Filters with Rapid Tunability and High Selectivity

    Get PDF
    Photonic technologies have received considerable attention for enhancement of radio-frequency (RF) electrical systems, including high-frequency analog signal transmission, control of phased arrays, analog-to-digital conversion, and signal processing. Although the potential of radio-frequency photonics for implementation of tunable electrical filters over broad RF bandwidths has been much discussed, realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for RF photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability, and bandwidth reconfiguration. In one configuration tuning of the RF passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes comb spectra, resulting in Gaussian RF filter lineshapes exhibiting extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.Comment: Updated the submission with the most recent version of the pape
    corecore